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A B S T R A C T   

Spatial and temporal levels of information processing interfere with each other. The Kappa effect is a well-known 
spatiotemporal interference in which the estimated time between two lights increases as the distance between 
them increases, showing a deceleration tendency. A classical model attributes this interference to constant speeds 
and predicts a linear relation, whereas a slowness model attributes the interference to slow speeds and proposes 
that the tendency is due to the uncertainty of stimuli locations. This study integrated a unifying Bayesian 
framework with the classical model and argued that this tendency is the result of the Weber–Fechner law. This 
hypothesis was tested via two time discrimination tasks that manipulated the uncertainty of stimuli locations and 
the distance between stimuli. Experiment 1 showed that the estimated time was not modulated by the uncer-
tainty of the stimuli locations. Experiment 2 revealed that the behavioral predictions made by the Bayesian 
model on logarithmic scales were more accurate than those made by the linear model. Our results suggest that 
the deceleration tendency in the Kappa effect is the result of the Weber–Fechner law.   

1. Introduction 

Many tasks require the precise perception of temporal and spatial 
information. For example, pilots must land the plane in the right place at 
the right time. The interaction of spatial and temporal representations in 
the brain has long attracted attention in the fields of psychology and 
neuroscience (Oliveri et al., 2009). Spatiotemporal interference offers a 
window by which to investigate the nature of representations of time 
and space (Casasanto and Boroditsky, 2008; Walsh, 2003). The Kappa 
effect is one of the most well-known spatiotemporal interferences 
(Cohen et al., 1953). In the simplest experiment regarding this effect, 
two lights were flashed in sequence to define the distance and time in-
terval; the perceived time interval seemed to increase as the spatial 
distance between the two lights increased (Price-Williams, 1954). 

Theoretical models have attempted to explain spatiotemporal inter-
ference quantitatively. The classical model of the Kappa effect assumes 
that observers tend to impute motion to the static lights implicitly; the 
model indicates that the imputed motion has a constant speed (Cohen 
et al., 1955; Collyer, 1976; Masuda et al., 2011; Price-Williams, 1954). 
The model quantitatively accounts for the Kappa effect, in which the 

perceived inter-stimulus time is a weighted average of the actual time 
and the expected time, and the expected time is calculated as the ratio of 
the known distance to a constant speed (Huang and Jones, 1982; Jones 
and Huang, 1982). A slowness model was proposed to explain the 
cutaneous rabbit illusion, tactile Kappa effect, tactile temporal order 
judgment, and spatial attention effects (Goldreich, 2007; Goldreich and 
Tong, 2013). This model was developed based on the “slow speed prior” 
hypothesis. The term “slow speed prior” comes from the statistical 
structure of motion, in which objects tend to be stationary or move 
slowly (Freeman et al., 2010; Stocker and Simoncelli, 2006; Weiss et al., 
2002). The slowness model combines a slow speed prior with tactile 
spatiotemporal information to obtain an optimal spatiotemporal 
perception using Bayes’ rule (Goldreich, 2007; Goldreich and Tong, 
2013). 

Recently, a study demonstrated that the classical model can be 
rewritten as a Bayesian model with an appropriate definition (Chen 
et al., 2016). In this study, two circles flashed from the left to the right 
visual field in sequence. The time interval and the distance between the 
two circles were manipulated. The subjects were required to reproduce 
the time interval between the two circles. The study found that the 
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classical model and the slowness model both replicated the Kappa effect 
but that the nonlinear slowness model fitted the deceleration tendency 
better than the linear classical model (i.e., the estimated time increased 
more slowly with longer distances than it did with shorter distances). 
However, Chen et al. (2016) pointed out that the slowness model has 
three disadvantages. First, it has a complex expression, and the esti-
mated time cannot be written as a function of the sample time. Second, 
the spatial uncertainty of the slowness model, inferred from previous 
studies, remains unchanged for different participants, but individual 
differences, luminance contrast, and the shapes of visual stimuli may 
modulate spatial uncertainty. Finally, the uncertainty of temporal in-
formation changes along with the sample time, which prevents the 
model from predicting the production time for a new sample time. 
Furthermore, the slowness model attributes the deceleration tendency to 
the spatial uncertainty of stimuli locations (see “slowness model” in the 
supplementary materials for details; Chen et al., 2016; Goldreich, 2007); 
however, the hypothesis that the deceleration tendency is driven by 
spatial uncertainty has never been tested. 

A unifying Bayesian framework has been proposed for estimations of 
magnitudes, such as loudness, distance, or time. The framework in-
corporates Weber–Fechner’s law of magnitude estimation with the in-
fluence of prior experience; provides a unifying perspective that explains 
biases in magnitude estimation, such as the regression effect, range ef-
fect, scalar variability, and sequential effect; reconciles and provides a 
re-interpretation of the work of Weber–Fechner and Stevens; and guides 
future investigations into the neurobiological underpinnings of magni-
tude estimation for health and psychiatric diseases (Petzschner et al., 
2015). Fechner (1860) proposed a logarithmic relationship between 
physical magnitudes and representations via sensory systems based on 
Weber’s law. Research findings confirm that magnitude estimations are 
on a logarithmic scale, such as distance reproduction (Durgin et al., 
2009; Lakshminarasimhan et al., 2018; Petzschner and Glasauer, 2011), 
numerical quantities (Dehaene, 2003; Dehaene et al., 2008), visual 
motion perception (Stocker and Simoncelli, 2006), and time perception 
(Brannon et al., 2008; Gibbon, 1977; Gibbon and Church, 1981). As 
Fechner’s law shows a typical deceleration tendency whereby the sub-
jective sensation is proportional to the logarithm of the stimulus in-
tensity, we postulated that the deceleration tendency in the Kappa effect 
may be the result of the Weber–Fechner law. 

We incorporated the classical model into the Weber–Fechner law 
according to the unifying Bayesian framework (Petzschner et al., 2015). 

The logarithmic version of the classical model (LCM) assumes a loga-
rithmic time representation, which is based on the finding that time 
discrimination approximately follows the Weber–Fechner law (Brannon 
et al., 2008; Gibbon, 1977; Gibbon and Church, 1981). The physical time 
and expected time are logarithmically transformed into internal time 
(Petzschner et al., 2015; Petzschner and Glasauer, 2011; Stocker and 
Simoncelli, 2006). The estimated internal time is a weighted average 
internal time as transformed from physical and expected time; this is 
similar to the classical model, in which the estimated time is a weighted 
average of physical time and expected time (see supplementary mate-
rials for details). We conducted two experiments to investigate whether 
the deceleration tendency is driven by spatial uncertainty or the 
Weber–Fechner law. Experiment 1 tested whether the spatial uncer-
tainty of stimuli locations modulated the estimated time (see Fig. 1). 
Experiment 2, a continuation of Experiment 1, examined whether the 
deceleration tendency was driven by the Weber–Fechner law (see 
Fig. 3). 

2. Experiment 1 

The slowness model attributes the deceleration tendency to the 
spatial uncertainty of stimuli locations (see supplementary materials for 
details; Chen et al., 2016; Goldreich, 2007). In the test examining 
whether the spatial uncertainty of stimuli locations modulated time 
perception, two sample circles flashed from the left to the right visual 
fields in sequence at nine locations (see Fig. 1A). The horizontal distance 
between the two circles and the vertical distance between the circles and 
the central square were randomly chosen from three distances (see 
Fig. 1B). The classical model, LCM, and slowness model all predict that 
the estimated time increases as the horizontal distance increases (see 
Fig. 1C, D, and E; see supplementary materials for details). The slowness 
model infers that a larger spatial uncertainty results in a greater un-
derestimation of physical distance (Tong et al., 2016) and that a shorter 
distance produces a shorter duration perception (Chen et al., 2016; 
Goldreich, 2007). Because the spatial uncertainty of the circle locations 
increases as vertical distance increases (Levi et al., 1988; Waugh & Levi, 
1993), the slowness model predicts that the estimated time will decrease 
as the vertical distance increases (see Fig. 1C). Given a horizontal dis-
tance, two circles always appear in the same row; thus, the straight-line 
distance between two circles is the same for different vertical distances 
(see Fig. 1B). Furthermore, the classical model and the LCM are 

Fig. 1. The procedure, stimuli, and 
predictions of models in Experiment 
1. (A) Time discrimination task. The 
sample was the time interval between 
two white circles, and the probe was 
the time interval during the presenta-
tion of the blue square. (B) The 
display positions of circles in Experi-
ment 1. Nine digits represent nine 
treatments (3 horizontal distances × 3 
vertical distances). The fixation 
square was presented overlapping 
with position 1. (C) The slowness 
model predicts that the estimated time 
will decrease as the vertical distance 
increases. (D) The classical model and 
(E) the LCM predict no effect of the 
vertical distance on the estimated 
time.   
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unrelated to the spatial uncertainty of the circle locations; thus, the two 
models predict that the estimated time will remain constant as vertical 
distance increases (see Fig. 1D and E). 

2.1. Methods 

2.1.1. Participants 
Twenty participants (11 males, 18–27 years of age) participated in 

Experiment 1. All participants had normal or corrected-to-normal visual 
acuity. Informed written consent was obtained from all participants. The 
study was carried out in accordance with the Declaration of Helsinki 
(World Medical Association, 2013) and was approved by the Ethics 
Committee of Southwest University. 

2.1.2. Stimuli and procedures 
The visual stimuli were displayed on a computer screen with a black 

background. The screen was a 27-inch and 60 Hz refresh rate. White, 
blue, or cyan squares were 2 mm in size (0.2◦). The white circle was 6 
mm in diameter (0.6◦). Stimulus presentation was controlled using 
MATLAB (MathWorks, Inc., Natick, Massachusetts, USA) and Psy-
chtoolbox 3 (Brainard, 1997). Experiment 1 was modified from a time 
reproduction task used in Chen et al. (2016). We used a time discrimi-
nation task with the constant stimuli method to avoid response bias in 
the time reproduction task (Chen et al., 2016; Pöppel, 1997; Szelag et al., 
2002; Ulbrich et al., 2007). 

The participants were seated approximately 60 cm in front of a 
computer monitor. At the beginning of each trial, a white square 
appeared in the center of the screen for 0.4 s. The participants were 
required to fixate on the central square throughout the trial (see Fig. 1A). 
Two sample circles flashed from the left to the right visual fields in 
sequence, and then the central square turned blue (the probe). The 

horizontal distance between the two circles and the vertical distance 
between the circles and the central square were randomly chosen from 
three distances (0◦, 4◦, or 8◦). Circle positions were marked by digits 
from 1 to 9 for nine treatments (3 × 3; see Fig. 1B). The sample interval 
between the two circles was 0.5 s. The probe time interval during the 
presentation of the blue square was randomly chosen from seven du-
rations (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, or 0.8 s). The circles were presented 
in advance of the blue square in half of the trials, and the blue square 
was presented in advance in the other half of the trials. Finally, the 
central square turned cyan as a response signal. We used a two- 
alternative forced-choice (2-AFC) experimental protocol, in which the 
participants were asked to select whether the probe time interval of the 
blue square was shorter or longer than the sample time interval between 
the two circles. The participants pressed “F” or “J” on the keyboard using 
the index fingers of both hands (“F” denoted shorter and “J” longer). An 
inter-trial interval of 0.4 s was used. 

We used three horizontal distances, three vertical distances, and 
seven probe time intervals, and each treatment consisted of 20 trials, 
with a total of 1260 trials (3 × 3 × 7 × 20) in Experiment 1. Participants 
had a short break (approximately a minute) once they completed 126 
trials. 

2.1.3. Statistical analysis 
Data were fitted by cumulative Gaussians for each condition (see 

Fig. 2A, B, and C), and the point of subjective equality (PSE) and stan-
dard deviation (SD) were calculated using the best-fitting function (Burr 
et al., 2007, 2009). A two-way repeated-measures analysis of variance 
(ANOVA) was conducted on the PSE and SD for all participants in 
Experiment 1. The ANOVA factors were horizontal distance (0◦, 4◦, 8◦) 
and vertical distance (0◦, 4◦, 8◦). The Greenhouse–Geisser correction 
was used to correct for any violations of sphericity (Greenhouse and 

Fig. 2. Behavioral responses for Experiment 1. Responses and corresponding psychometric curves of a representative participant for the (A) 0◦, (B) 4◦, and (C) 8◦

vertical distances. (D) Mean point of subjective equality (PSE) and (E) mean standard deviation (SD) of all participants. The error bars indicate one standard error of 
the mean across all participants. (F) The correlation between mean PSE and mean SD. Nine circles indicate nine treatments (3 horizontal distances × 3 verti-
cal distances). 
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Geisser, 1959), and the partial eta squared (ηp
2) was used to estimate the 

ANOVA effect size (Levine and Hullett, 2002). 

2.2. Results and discussion 

Two circles were presented in sequence at nine locations in Experi-
ment 1 (see Fig. 1). The PSE was estimated for nine stimuli locations 
(three horizontal distances × three vertical distances). For a represen-
tative observer, the psychometric curves of the data moved from left to 
right as the horizontal distance between the two circles increased for 
vertical distances of 0◦ (see Fig. 2A), 4◦ (see Fig. 2B), and 8◦ (see 
Fig. 2C). The PSE increased as the horizontal distance increased, 
whereas the PSE remained constant as the vertical distance increased at 
the group level (see Fig. 2D). 

A two-way repeated-measures ANOVA conducted on the PSE 
revealed a significant main effect of horizontal distance [F(2, 38) =
14.663, p < 0.01, ηp

2 = 0.436]. The PSE was significantly smaller in the 
0◦ (mean ± SEM: 0.402 ± 0.020 s) than in the 4◦ (0.487 ± 0.016 s) and 
the 8◦ (0.550 ± 0.032 s) conditions (p < 0.05), and the PSE was 
significantly smaller in the 4◦ condition than in the 8◦ condition (p <
0.05). These results replicated the typical Kappa effect, in which the 
estimated time increased along with the space distance between the 
circles. The main effects of vertical distance [F(2, 38) = 0.617, p > 0.05, 
ηp

2 = 0.031] and the interaction between horizontal and vertical dis-
tances [F(4, 76) = 0.714, p > 0.05, ηp

2 = 0.036] were not significant. The 
mean PSEs were 0.479 ± 0.016 s, 0.475 ± 0.020 s, and 0.485 ± 0.018 s 
for 0◦, 4◦, and 8◦ vertical distances, which were not consistent with the 
prediction of the slowness model that time would decrease as the ver-
tical distances increased. 

We also conducted statistical power analyses for the main effect of 
vertical distance using R software with pwr (https://CRAN.R-project.org 
/package=pwr). According to the equation, the effect size f was 0.179. 
We can compute the ideal sample size as 101 (Cohen, 1988) given that 
the ideal statistical power for any study is considered to be 0.8 (Malone 
et al., 2016), and the significance level is 0.05. A sample size of >100 
indicated that the effect of vertical distance on the estimated time was 
quite weak. In summary, the results indicated that the variance of 
stimuli locations was not an influencing factor for the Kappa effect. 

A two-way repeated-measures ANOVA conducted on the SD showed 
that the main effects of horizontal distance [F(2, 38) = 1.572, p > 0.05, 
ηp

2 = 0.076] and vertical distance [F(2, 38) = 0.269, p > 0.05, ηp
2 =

0.014] and horizontal distance × vertical distance interaction [F(4, 76) 
= 0.315, p > 0.05, ηp

2 = 0.016] were not significant. The mean SD 
increased as the horizontal distance increased (0.277 ± 0.0270 s, 0.284 
± 0.033 s, and 0.308 ± 0.032 s for 0◦, 4◦, and 8◦). Statistical power 
analysis was conducted on the main effect of the horizontal distance. 
The statistical power was 0.8, and the significance level was 0.05. We 
computed the ideal sample size to be 40, which indicates that the effect 
of horizontal distance on the SD can be significant if the sample size is 
increased by a reasonable rate. 

The Pearson correlation coefficient was calculated to assess the 
relationship between the PSE and SD. We found a significantly positive 
correlation between mean PSE and mean SD (r = 0.767, p < 0.05; see 
Fig. 2F). The result indicating that SD increased with PSE was consistent 
with the scalar variability whereby the standard deviation of an internal 
time increases linearly with its mean (Brannon et al., 2008; Gibbon, 
1977; Gibbon et al., 1984; Wearden, 1999). 

One crucial assumption of this study is that the spatial uncertainty of 
the circle locations increases as vertical distance increases. This 
assumption is based on the finding that the spatial uncertainty increases 
with the increase of the eccentricity (Levi et al., 1988; Waugh & Levi, 
1993), and the eccentricity increases as the vertical distance increases 
(Fig. 1B). The increase in spatial uncertainty with eccentricity has been 
suggested to arise from a decrease in the precision of retino-cortical 
mapping (Klein & Levi, 1987; Levi & Klein, 1990), and from increases 
in the spatial irregularity of the retinal mosaic (Wilson, 1991). Thus the 

assumption that vertical displacements increase spatial uncertainty is 
reasonable. 

3. Experiment 2 

The distance between the two sample circles was randomly chosen 
from 1◦ to 32◦ in Experiment 2, enabling the use of psychophysical 
functions to assess the fit of the models for the deceleration tendency. 
The findings showed that the LCM replicated the tendency, rather than 
the classical model, providing evidence that the deceleration tendency is 
driven by the Weber–Fechner law. 

3.1. Methods 

3.1.1. Participants 
Ten participants (three males, 20–29 years of age) participated in 

Experiment 2. Other details were the same as those in Experiment 1. 

3.1.2. Stimuli and procedures 
Experiment 2 (see Fig. 3) used a time discrimination task with the 

staircase procedure to save time, rather than the constant stimuli 
method (Meese, 1995). Two sample circles flashed from the left to the 
right visual fields in sequence. The vertical distance between the circles 
and the central square was 2.9◦ (30 mm; Chen et al., 2016). The hori-
zontal distance between the circles was randomly chosen from six dis-
tances (1◦, 2◦, 4◦, 8◦, 16◦, or 32◦). Sample time intervals between two 
sample circles were randomly chosen from two durations (0.5 or 1 s). 
Then, two probe circles flashed from the left to the right visual fields in 
sequence. The horizontal distance between the two probe circles was 1◦. 
Probe time intervals between the two probe circles were adjusted ac-
cording to the interleaved adaptive staircase procedure. One staircase 
started from 0.4 time of the sample time interval (e.g., 0.2 s for the 
sample time interval of 0.5 s), and the other staircase started from 1.6 
time of the sample time interval. The staircase procedure consisted of 
the simple up-down method (one up, one down) with a step size of 0.1 
time of the sample time interval. The sample circles were presented in 
advance of the probe circles in half of the trials, and the probe circles 
were presented in advance in the other half of the trials. Participants 
were asked to select whether the time interval between the first pair of 
circles was shorter or longer than that between the second pair. Par-
ticipants pressed “F” or “J” on the keyboard using the index fingers of 
both hands (“F” denoted longer and “J” shorter). 

The experiment used two sample time intervals and six horizontal 
distances. Each treatment consisted of two staircases, with 40 trials in 
each staircase. The 80 trials determined a psychometric function for 
treatment (Stocker and Simoncelli, 2006). All staircases were randomly 
interleaved. There were 960 trials (2 × 6 × 2 × 40) in Experiment 2. 
Participants were permitted a short break (of approximately one min-
ute) once they completed 96 trials. 

3.1.3. Fitting the models to the data 
We first obtained PSE by fitting the cumulative Gaussian function to 

the data for each treatment and each participant (see Fig. 4A). 
Then, the maximum-likelihood estimation was used to estimate the 

best-fitting parameters of the classical model and the LCM (see Fig. 3B 
and C; see supplementary materials for details). Observers estimated the 
probe time interval to be shorter (ri = –1) or longer (ri = +1) than a 
sample time interval in the ith trial. Following the signal detection 
theory (Freeman et al., 2010; Wickens, 2001), the d’ value was calcu-
lated for the response in the ith trial with Equation S5 for the classical 
model or with Equation S18 for the LCM (see the supplementary ma-
terials for details). The probability was calculated using the cumulative 
standard normal distribution function Ф: 

p(ri = 1|θ) = Φ
(

d’
̅̅̅
2

√

)

, orp(ri= − 1|θ) = 1 − Φ
(

d’
̅̅̅
2

√

)

(1) 
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The responses were assumed to be independent across trials. The 
joint conditional probability of the responses across all n trials can be 
expressed as follows: 

logp(r1, r2,⋯, rn|θ) =
∑n

i=1
logp(ri|θ) (2) 

Parameters θ were ω, v0, and wm for the classical model and ωs, σsm, 
v0, and t0 for the LCM. The parameters were determined for each 
participant by maximizing the likelihood using the “fminsearch” com-
mand in MATLAB (Freeman et al., 2010). The bootstrap method was 
used to estimate the standard errors of the parameters for each indi-
vidual participant (see Supplementary Table 1). We resampled the data 
with replacement and repeated this resampling 100 times (Chang and 
Jazayeri, 2018; Jogan and Stocker, 2015; Stocker and Simoncelli, 2006). 

The Akaike information criterion (AIC) was used to evaluate the 
goodness of the model fit. The AIC accounts for overfitting by penalizing 
models with a greater number of parameters (Akaike, 1974). It is 
calculated as follows: AIC = 2

[
k −

∑n
i=1logp(ri|θ)

]
, where k is the num-

ber of parameters, and θ is the best-fitting parameter of the model. In this 
study, k was 3 for the classical model (ω, v0, wm) and 4 for the LCM (ωs, 
σsm, v0, t0). The AIC difference (Δ) was obtained by subtracting the AIC of 
the LCM from that of the classical model. 

3.2. Results and discussion 

Experiment 2 supports the assertion that the Weber–Fechner law is 
critical for the deceleration tendency in the Kappa effect. A 2-FAC time 

Fig. 3. The procedure and Bayesian models in Experiment 2. (A) The procedure of Experiment 2. The sample and probe were the time intervals between two pairs of 
circles. (B) The classical model for time discrimination task. In each trial, the observer independently performs an optimal time estimation on sample and probe time 
intervals and then selects the longer estimate in the decision stage. The measured time tm is assumed as a normal likelihood function. The responses are modeled using 
standard methods from signal detection theory. (C) The logarithmic version of the classical model (LCM) for the time discrimination task. The measured time tm and 
expected time E(t) are assumed as log-normal likelihood functions, and the measured time and expected time are then logarithmically transformed into internal 
measured time (likelihood, Sm) and internal expected time (prior, Sτ). The internal measured time (likelihood) and the internal expected time (prior) are both normal 
distributions; thus, the estimation and decision stages of the CLM are similar to those of the classical model. 
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discrimination task was used to characterize the estimated time as a 
function of the sample time intervals (0.5 and 1 s) and the horizontal 
distances between the two circles (1◦, 2◦, 4◦, 8◦, 16◦, 32◦; see Fig. 3A). 
We then fitted the classical model and the LCM to the data to ascertain 
which model best explained the data. 

The PSE was estimated for 12 treatments (two sample time intervals 
× six horizontal distances) for each participant. For a representative 
observer, the psychometric curves of the data moved from left to right as 
the horizontal distance between the two circles increased (see Fig. 4A). 
The deceleration tendency was observed both in the 0.5-second (see 
Fig. 4B) and 1-second (see Fig. 4C) conditions at the group level. 

The LCM seemed to qualitatively explain the human data better than 
the classical model in both the 0.5-second (see Fig. 4B) and 1-second (see 
Fig. 4C) conditions. The classical model predicts the PSE as a linear 
function of the horizontal distance (see Equation S8 in the supplemen-
tary materials). For the best-fitting parameters, ω was 0.998 ± 0.0004 
(M ± SD), v0 was 0.250 ± 0.015◦/s, and wm was 0.506 ± 0.061. The LCM 
predicts the deceleration tendency in which the PSE is a power function 
of the distance between two circles (see Equation S21 in the supple-
mentary materials). ωs was 0.940 ± 0.007, σsm was 0.219 ± 0.031 s, v0 
was 0.088 ± 0.016◦/s, and t0 was 0.997 ± 0.376 s. The best-fitting pa-
rameters are presented in Supplementary Table 1 for each participant. 

We further explored the individual differences in the Kappa effect 
based on the LCM. We defined κ= 1 − ωs =

1
(σ2

sτ/σ2
sm)+1 

as an index of the 

strength of the Kappa effect. A larger κ indicates a faster increase in the 
estimated time as the distance l between two circles increases (see 
Equation S15 in the supplementary materials). σsm is an index of the 
variability in time perception. We found a significantly positive corre-
lation between κ and σsm (r = 0.719, p < 0.05; see Fig. 4D). These results 
indicate a close relationship between the variability of time perception 
and the strength of the Kappa effect. 

We evaluated the goodness of fit of the model using the AIC index. A 
larger AIC indicates that the fitted model is less plausible. AIC Δ was 
obtained by subtracting the AIC of the LCM from that of the classical 
model for each participant. The AIC Δ ranged from 5.943 to 24.099. 
According to the levels of empirical support for the model (0 ≤ Δ ≤ 2 =
substantial; 4 ≤ Δ ≤ 7 = considerably less; Δ > 10 = essentially none; 
Burnham and Anderson, 2004), the LCM was superior to the classical 
model in terms of model fitting for all participants. 

4. General discussion 

We used a time discrimination task to replicate the Kappa effect, in 
which the PSE increases along with the distance between two circles. We 
manipulated the vertical distance between circles and a central fixation, 
and produced evidence in Experiment 1 that the tendency to decelerate 
in the Kappa effect is not driven by the uncertainty of circle locations 
(see Fig. 2). We then manipulated the distances between sample circles 

Fig. 4. Behavior responses and model fitting for Experiment 2. (A) Responses and corresponding psychometric curves of a representative participant. Mean PSE of all 
participants and predictions of Bayesian models in the (B) 0.5-second and (C) 1-second conditions. The error bars and shadows indicate one standard error of the 
mean across all participants. (D) The correlation between variability of time perception (σsm) and the strength of the Kappa effect (κ = 1 − ωs). Ten circles indicate 10 
participants. 
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from 1◦ to 32◦ and compared fit levels between the classical model and 
the LCM in Experiment 2 (see Fig. 4). The AIC index provided quanti-
tative evidence that the LCM fit the data better than the classical model. 

We found that the main effect of vertical distance was not significant, 
which indicates that the spatial uncertainty of the circle locations does 
not influence the visual Kappa effect. Our results are inconsistent with 
the prediction of the slowness model that a given distance with a larger 
spatial uncertainty of stimuli locations will be perceived as shorter 
(Tong et al., 2016) and that a shorter distance will lead to a shorter 
duration perception (Chen et al., 2016; Goldreich, 2007). This contra-
diction may be due to the differences in spatial processing characteris-
tics between visual and tactile modalities. The localization of touch on 
body parts is often inaccurate. In the cutaneous rabbit effect, for 
example, subjects can perceive a series of taps on the skin that does not 
exist (Geldard and Sherrick, 1972; Miyazaki et al., 2010). However, our 
visual localization was very precise. People can hit rapidly moving balls 
with exceptional precision (Land and McLeod, 2000). As predicted by 
the Bayesian observer model, tactical spatial processing is more inac-
curate; thus, tactile processing can be easily interfered with by expec-
tation (Tong et al., 2016). Therefore, the slowness model is not suitable 
for explaining the visual Kappa effect. 

We replicated the deceleration tendency whereby the PSE increases 
more slowly with a longer distance than with a shorter distance, which is 
consistent with the prediction of the LCM rather than that of the classical 
model. The AIC results also showed that the LCM was superior to the 
classical model in data fitting. Chen et al. (2016) found the deceleration 
tendency in the 0.8-second condition, but a linear relation was found in 
the 1.2-second condition (see Supplementary Fig. 2). We fitted the 
models to the data drawn from Chen et al. (2016) and found that the 
LCM was not substantially different from the classical model in data 
fitting (see the supplementary materials for details). The difference be-
tween the two studies was due to the experimental paradigms. Previous 
studies have shown that motor response has an important influence on 
temporal performance in the time reproduction task; participants have 
been found to be able to estimate the time interval accurately but be 
unable to reproduce it accurately (Droit-Volet, 2010; Wearden, 2003). In 
the time discrimination task, participants need to estimate the standard 
and probe time intervals and decide which time interval is longer. The 
time discrimination task does not need to reproduce the time interval; 
thus, the influence of the motor response on the time estimation can be 
avoided. Therefore, the time discrimination task is more suitable for 
studying the deceleration tendency than the time reproduction task. 

The key hypothesis of LCM is the logarithmic internal representation 
of time. The logarithmic internal time hypothesis was deduced from the 
scalar variability of time perception, in which the standard deviation of 
timing increased linearly as the time interval increased. The scalar 
variability is consistent with the Weber–Fechner law, which determines 
a logarithmic internal representation of time (Brannon et al., 2008; 
Gibbon, 1977; Gibbon et al., 1984; Wearden, 1999). However, several 
studies have reported that time estimation follows Stevens’ power law 
(Bobko et al., 1977; Eisler, 1976; Grondin and Laflamme, 2015). Studies 
have revealed that the Bayesian model provides a direct link between 
Weber–Fechner’s law and Stevens’ power law (Petzschner et al., 2015; 
Petzschner and Glasauer, 2011). Our Bayesian model shows that the 
internal time is a logarithmic function of physical time and physical 
distance (Equation S15), which follows the Weber–Fechner law. A motor 
response te, which is the estimated time in the time reproduction task or 
verbal estimation task, is a power function of physical time and physical 
distance (Equation S17), and the PSE is a power function of physical 
distance (Equation S21), which follows Stevens’ power law. Therefore, 
our study provides evidence that the deceleration tendency is driven by 
the Weber–Fechner law. 

The speed prior is the basic hypothesis of the three Bayesian models. 
The slowness model assumes a low speed prior to the movement of 
objects at a low speed with a mean of zero (Freeman et al., 2010; Stocker 
and Simoncelli, 2006; Weiss et al., 2002). The classical model and LCM 

both assume a constant speed prior to objects moving at a constant speed 
(Jones and Huang, 1982). We found that the estimated constant speed of 
the classical model (0.25◦/s) is close to the absolute threshold of speed 
for older people with a mean age of 62 (0.12◦/s), while the estimated 
constant speed of the LCM (0.09◦/s) is equal to the absolute threshold of 
speed for younger people with a mean age of 23 (Snowden and Kava-
nagh, 2006). We refitted the classical model and the LCM to the data in 
Chen et al. (2016) using the bootstrap method. The constant speed was 
approximately 0.2◦/s for the classical model and approximately 0.7◦/s 
for the LCM (see supplementary materials for details). Although Chen 
et al. (2016) did not use the bootstrap method, they also reported that 
the constant speed was approximately 0.2◦/s for the classical model. 
Thus, our results confirmed the previous finding that the constant speed 
was slow. 

We defined κ as an index of the strength of the Kappa effect and 
found that κ positively correlated with the variability of time perception. 
To the best of our knowledge, this is the first report of individual dif-
ferences in the Kappa effect, whereby individuals with a more precise 
time perception have a weaker Kappa effect. This result is consistent 
with the widely accepted notion of Bayesian theory that humans’ reli-
ance on prior knowledge increases as the uncertainty of a task increases 
(Körding, 2007; Körding et al., 2004; Pouget et al., 2013; Stocker and 
Simoncelli, 2006). Studies have proposed that spatiotemporal in-
terferences are especially correlated to depend on the variability of the 
perceived dimensions (Cai et al., 2018; Cai and Connell, 2015); how-
ever, these studies provide only qualitative evidence (interference vs. no 
interference). Our study provides not only a theoretical function be-
tween the strength of the Kappa effect and the variability of time 
perception (κ = 1

(σ2
sτ/σ2

sm)+1
) but quantitative empirical evidence as well 

(see Fig. 4D). 

5. Conclusions 

We performed two experiments to determine why spatiotemporal 
interference is accompanied by a deceleration tendency. In Experiment 
1, we found that the uncertainty of stimuli locations did not modulate 
the estimated time, which suggests that the slowness model, originating 
from tactile neural activities, is not suitable for explaining the visual 
Kappa effect. In Experiment 2, we found that the Bayesian model on 
logarithmic scales made better behavioral predictions than the linear 
model and provided a theoretical framework with which to integrate the 
logarithmic time representation with power time estimation. The esti-
mated constant speed was close to the absolute threshold of speed, 
which confirms the previous finding that the Kappa effect is driven by 
slow speeds. Based on the logarithmic Bayesian model, κ was defined as 
an index of the strength of the Kappa effect and was found to be posi-
tively correlated with the variability of time perception. Our findings 
suggest that the deceleration tendency in spatiotemporal interferences is 
driven by the Weber–Fechner law. The unifying Bayesian framework 
helps explain the Kappa effect and may be applied in the field of time 
perception and other types of cross-dimensional interference with the 
appropriate assumptions in future work. 
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